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Estimates are presented in this paper, enabling us to decide in certain
cases whether the equations of motion arising from the applied (preces-
sional) theory of gyroscopes are applicable for large varistions of the
position coordinates and of the velocity.
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this paper.

L. In a general case, the dependence on time of the motion of the
platform, of the masses of the gyroscopic system, of the generalized,
ordinary and reactional forces, all of which correspend to the cyclic
coordinates, is arbitrary and the equations of motion of mechanical
systems with gyroscopes are written [1] as
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Here we use the notation for the derivatives the way it is used in

the mechanics of variable masses, where the derivatives are calculated
keeping the masses constant; gq.,(i = 1, ..., s) are the position coordi-
nates; Q, and ¥; are, respectively, the ordinary and the reaction forces
of the absolute motion which are functions of their position coordinates,
of their time derivatives, and of time; [/ /! is the partial derivative
with respect to time, when m and { are independent variables; ibﬁ)qi and
Ib?)éi are partial derivatives with respect to the indicated variables
when m, t, g, and g; are independent variables.

The Routh function for the absalute motion of the system, correct
within an additive constant, is [1].

R= 3 Ck<H+hk>(7: apgi+al) + T (H>h)  (12)
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where C, is the axial moment of inertia of the kth gyroscope, r is the
number of gyroscopes, H is a sufficiently large constant, h, is a func-
tion of time, a,% is the cosine of the angle between the angular velo-
city vector g, and the axis of the kth gyroscope, aok is the component
of the angular velocity of the platform along the axis of the kth gyro-
scope.

In Formula (1.2) the quantity T* represents the kinetic energy of the
absolute motion of the elements of the suspension of the gyroscopic
system, of the inner rings (cases), of the motors of the gyroscopes, and
also the kinetic energy of the rotors spinning about their axes.

Substituting (1.2) in Equations (1.1) we obtain

> aigi+ H (2 gidi + gio) +Q;=0 (1.3)
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Writing down the equations of motion arising from the applied theory
of gyroscopes we set T*= 0. Denoting in this case the position coordi-
nates as g;, we obtain the equations

H(Z giigi + gia) —8:=0 (1.5)
=1
where among the gij’s the g;,'s are the position coordinates, and in the

term ¢, the position coordinates and the velocities are replaced by g;’s
and g.’s.

When a gyroscopic system rests on a fixed platform, then aaik/at =
aolt = 0, hence g;o = 0.

In practice, gyroscopic systems rest on moving platforms and g;, are
of the same order as the angular velocity of the earth’s rotation, that
is, sufficiently small. In some gyroscopic systems the pendular moment
appearing in Q; approaches in magnitude H. We must take therefore into
account the peculiar features of the gyroscopic system under investigation.
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We shall assume that the matrix || g;.|l is non-singular, that the
coefficients a;:r ;5 and g o are of tﬁxe order zero or less (like H),
1, D . .
and that all the functions in (1.4) can be expanded in power series.

Let us consider the differential equations containing the small para-
meter

2 g él) é:‘z + g0+ MD‘(I) — H—19i(1) -0

f=1

The superscript (1) indicates that in the corresponding functions the
position coordinates and the velocities are replaced by the variables
9;; and 945

By the Poincaré small-parameter method [2 ] the variables 91 and éil
are determined from Equation (1.5), correct within the terms of order A.
Assuming that in a special case A = H™ !, we have

{gn—8i qn — & }=O0(H™) (16)

2. Let the gyroscopic system rest on a fixed platform, and let the
generalized forces of the absolute motion contain only terms of zero
order with respect to H.

We shall try now to obtain a solution of Equations (1.3) in the form

qi = qiy (H7't) + z; (HY) (2.1)
In our case, the variables g, satisfy the equations
B3 &g +Q% =0 (2:2)
je==1

The initial conditions are

s
qi; == q;’ xi" = 0, H Z gigl) oqj: o+ Qi(l) = 0, Ty =q; — @iy (2.3)

i=1

The derivatives with respect to r; = H™ ¢ and 7, = Ht will be denoted
by primes. VWhen dg,./dt and  Q ; /3t equal zero, or if they are of the
order A~ ! or less, then we shall say that our gyroscopic system satis-
fies conditions (4). From Equations (2.2) and conditions (2.3) it follows
that g, and g7, are of the order zero with respect to H, and further
that 9%} are of the order H, and when the conditions (4) are satisfied
they are of the order zero with respect to H.

By (1.3), (2.1), (2.2), and by setting g;0 = 0, we obtain equations
which determine x i
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&

2 [aij (gm1 (H 213)+ %, H7%)z" +gi(qm (H20)-+2m, H1vy) xj’] +

i=1

+ H? Qi (g (H205) + 2, H Vg (H721y) + He/, H,) —

— Qi (gmi (H?13), H_lqm; (H?1,), H-lfg)] + H2f;(H™, 2, 19) =0

8
ﬁ=2%MMF%Hﬂﬁ&%MﬂW@+
j=1
8
-+ Z {gin‘ (qm1 (H2Tq) + Tm, H'19) — gij (gmi(H?vp), H -1“72)] gin (H71,)
J=1

When the quantity £, is of the zeroth order, let

0 {Qi(E;, mj 1)} =c0(n;)

Interesting cases in practice are those for which ¢ = 0, 1, 2; we are
going to dwell on these cases. The functions f; are of the order H, and
when the conditions (4) are satisfied they are of the order zero with
respect to H.

By the Poincaré small-parameter method [2] we obtain
{&i—yi, &' —y'}=0(H™) (2.4)

The variables y; have the same initial values as the variables x,
and they satisfy the equations

8

3 [a4i (@m® + ¥m) 0)3S" + 8i(gm° + Y 03] (2.5)
i=1 ’

=—H? {Qi (Qm° -+ Ym» Hym'; 0) —&Q; (Qmﬁy 0, 0)]

When o = 0, 1, then the right-hand side of (2.5) can be replaced by
zero. When ¢ = 2, then a;;, g;;, and the right-hand side of (2.5) is of
order zero with respect to H, and by (2.5) the order of ¥ and y}- is the
same as the order of yJ-° and y",-°, that is, H~ L,

Therefore, as a consequence of (1.6), (2.1) and (2.4), we obtain
{gi — g} =O(H™) (2.6)

In our case Formula (2.6) constitutes the foundation of the applied
theory of gyroscopes.

Note. In order to prove the convergence of the series by the Poincaré
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method, we require that the variables q;; — g;, q;; — &; considered in
Section 1, and the variables x, — y,, 1 — y} considered in Section 2,
be bounded. Thus, the derived asymptotic estimates are valid for an in-
finite interval of time only when the above-mentioned variables are
bounded. In a general case with a possible instability of the gyroscopic
system, the estimates would be valid at any instant of time if the vari-
ables were within a domain which, however large, is bounded. This remark

applies to everything which follows.

We shall derive estimates for positional velocities. Introducing the
parameter p = H~ 2, and taking into account that in the general case q;i
are of the order H, we obtain

(o1 — 21, 7' — 2"} = O (H™?), {S.Ci—f':i} =0(H7) (2.7

The variables z; have the same initial values as x; and are determined
from the equations

Z {aij (gm® + zm, O) ZJ 4+ Hgi; (qm® -+ 2, 1) 23} == (2.8)

= )
= \Qi (le‘if Zm, H_Ile 4 Hzm: t) -k ‘Qi (q'mu H-I%Vu, t) —_
s

— D\ i (gm° -+ zm, 1) 451 (0)

i=1

When the (A4) conditions are satisfied, then ¢7] are of zero order with
respect to H, and on the right-hand side of (2.85 the last term contain-

ing §;:(0) can be omitted. If, besides, o = 0, then the whole right-hand

side o% (2.8) can be omitted and set equal zero.

Since by (2.2) the derivatives éil are of the order H"l, on the
strength of (1.6), (2.1) and (2.7) we have the following estimate of
positional velocities: {¢;, - Z;}= oH—1).

We shall examine, for example, a gyroscope of variable mass, whose
exact equations of motion are [ 3]

A — Aj?sinBcos 8 4 C (@ -+ pcos ) Psinh = mglsin b
A-g;(\bsinzﬁ)nL C% (@ -+ P cos B) cosB] — K cos 0
C—:T (@ + Peosb) = K

Here the moments of inertia A and C, the pendular moment mgl, and the
reactive moment K are known functions of time; we find that
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t

ptdeosd=H4h  h={Xa
0

Equations (1.3) assume the form
AU-A¢Zmn0cosﬂ+~C(Ha%h)¢ﬂn0r mgl sin 6
Apsin?® - 240 sinbeos 6 — C (H -+ h)Gsinh = 0

From the applied theory of gyroscopes we obtain

¢
. . ol l
C(H+h$=mgl, §=0, or 8=20, m:xﬁ%dm‘-wo (2.9)
0
As has been shown, the slow precession (2.9) determines the solution
of the exact equations, correct within terms of the order H™ 1.

We have thus reached the following conclusion: if a fast-spinning
gyroscope of variable mass is deflected from its vertical position
through an angle 0, then it will begin to oscillate with respect to the
motion (2.9) in variables 8 and ¢, and the amplitude of these oscilla-
tions will be of the order H~ ! and the frequency of the order H.

3. We shall consider now a gyroscopic system on a moving platform
with generalized forces of the order H (the pendular moment, for example.)
Let &; be determined by differential equations (1.5), and let them be of
the order A with respect to H. The solution of Equations (1.3) will be
in the form (2.1). The variables g;, will satisfy the equations

(3 8n + ")+ =0 (3.1)
=1

In this case we cannot regard g;, as functions of the argument
T,=H" Lt. The equations which determine x; are

8
D) @6 (@mi - 2m, H7%) 2" - 845 (Gmat 2m, H) 25|
=

§
. H™ [Qm (le + T, (.Iml + me’y Hﬂ‘lTZ) - ‘Q‘i (ley q.ml’ th'fg)] T

+Fi(Hh11 By Zm, T%):O

where s

8
Fi= 3 as{gmt om, H0) go+ H 3 (815 (Gmi+ Ty H 7)) —

J=1 j==1

— 85 (@m1y H0)] g5 + H 1 G0 (gma + Zmy H M) — 810 (@ma, H1)]
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When fj are of the zero order, then we consider
O1Q:(E;, m; HI<O, 0" = max {H?, 0 (n)} (5=0,1,2)

This corresponds to cases interesting in practice.

The functions F; depend on two small parameters H~ 1 and g, and they
vanish when the parameters equal zero. Denoting by O’- the largest order
of H= ! and of ;& and applying the Poincaré small-parameter method, we
obtain

Of{zy—yi, o' —y'}y =0 (3.2)

In this case the variables y; are determined from the equations

Z [aii (@m1+ Ym, H)yi" + €15 (qm1 + Ym, H™'Ty) yj’] + (3.3)
j=1

+H™? ['Qi (gm1+ Ym> Gma—+ Hym', H15) — Qi (Gmas G H_l'l"z)J =

From Equations (3.3) it follows that Y and y'i are of the same order
as their initial values, that is, H~ !. From the estimates (1.6) and

(3.2) we find
Olgi—g}=0" (3.4)

Fromula (3.4) can serve as a criterion in deciding whether the equa-
tions of the applied theory of gyroscopes can be used with a moving-
platform problem or not.

Consider the example of a gyroscope of constant mass with the axis of
the outer gimbal ring fixed in the platform moving with constant speed
in constant direction on the earth’s surface.

Using the applied theory of gyroscopes (T*= 0) and neglecting the
eastern velocity component, we obtain

R:C(H—]—h)(\bcosﬁ—vNR'lsinBsintp— ®cos @ sinfcos ¢ 4 o singcos )

Here 0 and i are the Eulerian angles measured from the local vertical
and parallel of latitude (in an easterly direction), vy is the northern
velocity component of the platform, R and'w are, respectively, the
radius and the angular velocity of the earth, ¢ is the geocentric lati-
tude. The equations of motion in variables g are

\p = — (vyR cotBsin P 4 o cos pcot 0 cos P + osin ) + C(l;g_l*_ 7

8 = rNyR™ cos P — @ cos @ sin P (3.9)
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It has been shown previously that the solution of Equations (3.5) re-
presents the motion of a gyroscope in coordinates ¢ and ¥, correct with-
in terms of order 0", where

0’ = max {H—l, 0(1%)2’ 0 (0%, (”_I)'_‘ﬂ>’ ) [Eﬁvi(vﬂii—l'ﬁ);l [C((')Hm-ilh)’J

4. We shall consider now a gyroscopic system with n auxiliary equa-
tions solved for the highest derivatives

E];'{'*Qa(Qi, (}ia Gyy ‘}vv s 2) zo, q."»‘LQ’:l (Qit Q;i; Gy, q.v’ g+, t) =0 (41)

Here a,v =s+ 1, ..., s+n; By=s+ny+ 1, ..., s+ n The
functions @; which appear in Equations (1.3) depend in this case on the
same variable as (1, Qﬁ, the coefficients agir Bijr &io depend on s + n
Lagrangian coordmates

The equations of motion derived from the applied theory of gyroscopes
form a compatible system (1.5) and (4.1) in which the variables g and
their derivatives should be replaced by the variables g and their deriva-
tives with the appropriate indices. Further

&y °= qvcv g« ¢ = Q‘(Ov évo = ‘jvo

The replacement of the variables 91 W1 Yy qﬁ, 9y by the vari-

ables g;, g, gy g; 8, is correct within terms of order H~

The equations determining the variables xp(p =1, ..., s+ n) are
8

2 [aii (gp1 - 1p, HIT) 2" - g3 (g + 79, H7'1y) fil] -+
i=1
+ H2 [Qi (g + 2 @i+ Hif, Qo+ Hao', H'wg) —
""Qi(qph éﬁl: ‘}313 Hﬂf&!)] +F1(H-1: K, Tp, 72) =0

.’Ua” +' H™2 [Qa (9‘.01 + xpt éil + Hxi’r ;711 + H‘T"‘-” H-lfz) o
— Qa (QPD éil’ ‘}al» HUIIE)} =

(tp' + H? [Qﬂ (qpl + Zp, (}n + Hzi', éal + Hz,' H—l"(,‘z) ——
— Q5 (gp1, éﬂ: (}ah ]1"172)] =0

where
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$ s
Fy=% aij(qps - 7p, Ho'ty) g+ HT {Z (g6 (qo -+ 2y H715) —

i=1 j=1

— 8ij (9p1s H_l’fz)] i1+ &io (O + 2o, H05) — gio (9, Hﬁlfz)}
We shall consider that if O(EP) = 0 then

O (Qi (&, my, La, 1)} <O, 0"= max {H?, s0(n;), 50 (5.)} (6 =0,1,2)
O{Qv (Ep, U Cm i)}gogs 0{Q¥(Ep: LIS ‘Za; £>}<{H; 510@‘}'}: GIO(Za»

(51=0,1)

By the Poincaré small-parameter method we have

t ’
{xp’_yp; X = Yiy xa’*?/a’;‘ =0

The variables y; satisfy the equation

8

2 a6 (o + Yo H'%) g+ 81 (g + ¥y H'0)yf'| +

—1

- H2[Q4 (g1 + Yoy G-+ Hyy', Gu + Hya', H ) —
_Q'i(gma 9.'.7'11 q.'ab Hﬂ‘-‘z)} =0

The variables y, and Yy satisfy the same equations as x,, and X

The variables Ypr y; are of the same order as their initial values.
Hence

{yp, yp'y = O(H™)

Finally, we obtain, in the form of the following estimates, the
criteria for deciding whether or not the equations derived from the
applied theory of gyroscopes are acceptable:

O{qp—gp) = 0" (p=1,2,..., s+ n)

BIBRLIOGRAPHY

1. Novoselov, V.S., Dvizhenie stabilizirovannykh giroskopicheskikh
sistem na podvizhnom osnovanii (On the motion of stabilized gyro-
scopiec systems on a moving platform). PMM Vol. 23, No. 5, 1859,



On the motion of nonlinear gyroscopic systems 1575

2. Golubev, V.V., Lektsii po analiticheskoi teorii differentsialnykh
uravnenii (Lectures on the Analytic Theory of Differential Equa-
tions). GITTL, 1950.

3. Novoselov, V.S., Reguliarnaia pretsessia giroskopa peremennoi massy
(On the regular precession of a gyroscope of variable mass). Izv.
Akad. Nauk SSSR, OTN No. 11, 1958,

Translated by T.L.



